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1. Error growth and unstable directions

Attractors and sensitivity to initial conditions

Non linear dynamical system: sensitivity to initial condition

A small perturbation of the initial condition originates a trajectory which progressively detaches from 

the unperturbed trajectory. After a sufficiently long evolution time, the two states (on the perturbed and 

on the unperturbed trajectory) are as far away from each other as two states randomly chosen among 

all those that are physically possible. They cannot go indefinitely far from each other!



  

1. Error growth and unstable directions

Non-linear growth of small perturbations

1) Early stages of growth:

●  Decrease (along stable directions);

● Super-exponential growth (non 

orthogonality of unstable directions)

1) Linear regime: exponential growth

2) End of linear regime

3) Saturation

non-linear
saturation

Linear growth
(exponential in time)



t

Linear regime
~exponential growth



  

 Linear regime: a small (hyper-) sphere, a “cloud” of possible initial states initially evolves 

into an (hyper-) ellipsoid, extending along the unstable directions, and shrinking along 

the stable directions.

 Each direction is characterized by its growth rate: positive for unstable directions, 

negative for stable directions.

 In dissipative systems, shrinking prevails: (hyper-) volumes decrease. 

 At the end of the linear regime the ellipsoid deforms: trajectories follow the shape of the 

attractor.

 As time proceeds, the initial “cloud” progressively distributes over the whole attractor.

1. Error growth and unstable directions

Non-linear growth of small perturbations

Figures from: Kalnay, 2003.



  

 (Oseledec, 1968) global Lyapunov exponents: average on the whole attractor of local 

growth rates – time limit along a trajectory ergodically visiting the whole attractor.

 Benettin et al. (1980): method to compute Lyapunov exponents: frequent Gram-

Schmidt ortho-normalization of n independent perturbations:

maintains the growth in the linear regime 

prevents that all directions collapse onto the most unstable one

 Lyapunov characteristic vectors are “co-variant” with the phase flow 

 NO dependence on scalar product:

Lyapunov exponents

The first Lyapunov vector 

The subspaces spanned by Lyapunov vectors

 DO NOT depend on the choice of the scalar product

 ⇒  Lyapunov characteristic vectors ARE NOT ORTHOGONAL

Legras and Vautard 1997; Trevisan and Pancotti  1998; Kalnay 2003; Wolfe and Samelson 2007; Ginelli et al. 2007

1. Error growth and unstable directions

TL dynamics: unstable directions = Lyapunov vectors with positive exponents



  

2. Assimilation in the unstable subspace (AUS)

E=[ e1 e2  eN ] f=E 

Pf ≃E ET

An important component of forecast error belongs to the unstable subspace.

Confine the analysis increment into the unstable subspace:

 How many LVs?: dimension of the unstable subspace (of the forced system) = 

= number of negative exponents

1) Estimate LV ← computational cost

2) Breeding: each Bred Vector is ~ a linear combination of unstable structures

3) If possible, compute as many BVs the number of unstable LVs

4) Otherwise: frequent analysis, localization...

AUS successfully applied to many systems of different complexity, and compared to EKF, 

4d-Var... References: http://www.magritte.it/francesco.uboldi/bdasaus_papers.html

xa=x fE HET [H E HETR ]−1 [ yo−H x f ]



  

2. Assimilation in the unstable subspace (AUS)

Breeding

time 0: perturbed state←  control state + perturbation
time t: perturbation←perturbed state  - control state

small initial perturbation; 
nonlinear integration of control and of perturbed state;
frequent rescaling of the growing perturbation to impose linear growth (along the non-linear  
trajectory)

Initially independent perturbations progressively 
collapse onto one direction (in how much time?)

MANY initially independent perturbations collapse 
onto FEW directions in a SHORT time!

A bred vector progressively acquires the structure 
of a linear combination of the unstable directions

Initial coefficients (of the linear combination) 
unknown!

How much time: depends on differences between 
growth exponents

(orthogonalization: to keep bred vectors 
independent)



  

2. Assimilation in the unstable subspace (AUS)

Data assimilation system

xk1
a = I−K H ° M °x k

aKy k1
o

It is a dynamical system FORCED by the assimilation of observations

xk1
f =M °xk

a
Forecast (nonlinear model integration)

xk1
a = I−K H ° xk1

f K yk1
o

Analysis

Errors (at first order):

 xk1
a = I−KH M xk

a

Perturbations (at first order):

 k1
a = I−KH M k

a I−KH  k1
M K  k1

o

decrease (depending on K,
assimilation goal)

growth



  

Freely evolving system: standard breeding

xk1
f =M °xk

a

δ xk+1
a =( I−K H )Mδxk

a

 xk1
f =M xk

a

xk1
a = I−K H ° M °x k

aKy k1
o

System forced by data assimilation: BDAS "Breeding on the Data Assimilation System"

 k1
f =M k

a k1
M

 k 1
a = I−KH M k

a I−KH  k1
M K  k1

o

BDAS: all perturbed states assimilate the same observations with the same 
assimilation scheme as the control state.

Instabilities grow during free evolution and are partly suppressed at each analysis stage.
1) The resulting bred vector are composed of instabilities that survived the analysis steps
2) The overall growth rate should be smaller than that of the free system

2. Assimilation in the unstable subspace (AUS)

Breeding on the data assimilation system (BDAS)



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

LIMITED-AREA MODELS AND BOUNDARY FORCING

 A limited area model is forced by lateral boundary conditions

 The boundary forcing has a stabilizing effect

 The same system is stabler in a smaller area

 Stable case: the boundary forcing determines the evolution

 In unstable cases, stability can be obtained by assimilating observation, then 

reducing errors

 Number and frequency of observations necessary to control the system depend 

on number of unstable directions and their growth rates

Stabilizing effects of different kinds of forcing:

 Boundary: forces the system trajectory to approach that of the external model

 Data assimilation: forces the system trajectory to approach reality



  



  

MOLOCH: non-hydrostatic, convection-
resolving model developed at CNR 
-ISAC, Bologna

For this work: 
● Resolution ~2.3 km.
● Domain: northern Italy Alps, part of 

Ligurian and Adriatic seas 
(Mediterranean).

● Initial and boundary conditions: 
BOLAM (hydrostatic LAM) and GFS.

● Control trajectory: simulation of a real 
case: (26 September 2007). Intense 
convective precipitation over the 
Venice area (north-eastern Italy). 
Scattered convection during the night, 
frontal-forced, organized convection in 
the day

Figure: Total precipitation accumulated fro 
00 to 12 UTC in control trajectory.

MOLOCH: Malguzzi et al., JGR-Atmospheres, 2006; Davolio et al., MAP, 2007; 2009; http://www.isac.cnr.it/dinamica/projects/forecasts/

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

Convection-resolving system: MOLOCH



  

Module of wind vector difference (perturbed state – control state) at level 5 : √δu2+δ v2

Two small, independent, randomly generated perturbations. Each variable scaled with its 
variability.
Breeding perturbations rescaled every 5 minutes, so that RMS of level 5 (~925hPa over sea) 
horizontal velocity is 0.05 m s-1.
Instabilities related to fastest and smallest dynamical scales.



  



  



  

After 1h30 the bred vectors show organized and similar spatial structures, localized in 
dynamical active areas (intense winds and convective precipitation)
➔ Bred vectors quickly get organized and show spatially coherent structures.
➔ Small perturbation growth in the linear regime is not immediately suppressed by the strong 
non-linear processes of  moist convection thermodynamics. 
➔ Different structures for different re-normalization amplitudes and frequencies



  

Doubling time  T
D
 estimated during the linear regime of growth for the most unstable 

modes:

Linearity time T
lin

 = duration of linear regime of growth 

The linear regime is estimated to end when anti-correlation is lost between to two 
perturbations initially having the same direction and opposite orientation, each undergoing 
non-linear free evolution

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

eλ T D=2 TD=
ln(2)

λ

When T
lin

 is shorter than T
D
, errors may reach saturation so quickly that one can hardly see 

a linear growth phase — after non-linear saturation, a reduction of the initial error 

cannot guarantee a reduction of forecast error

(Hohenegger and Schär, 2007)



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

SMALL AND FAST SCALE INSTABILITIES:

Rescaling frequency: every 5 min, rescaling amplitude 0.05 m s-1 (UV level 5)

Scattered convection:

Organized, mesoscale front driven convection:

The second convection episode, though more intense, is in fact more predictable, because 

of the leading role of the mesoscale (i. e. larger scale) forcing.

T lin≃T D≃2.5h
T lin>2T D≃4.0 h



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

SMALL AND FAST SCALE INSTABILITIES:

Rescaling frequency: every 5 min, rescaling amplitude 0.05 m s-1 (UV level 5)

Scattered convection:

Organized, mesoscale front driven convection:

The second convection episode, though more intense, is in fact more predictable, because 

of the leading role of the mesoscale (i. e. larger scale) forcing.

T lin≃T D≃2.5h
T lin>2T D≃4.0 h

Much smaller than present-day analysis error!
With a larger rescaling amplitude and appropriately lower rescaling frequency, such 
fast instabilities saturate.
Saturated small-scale instabilities are not responsible for further error growth, but they 
affect (non-linear interaction) larger scales (which are in their linear regime): these are 
responsible for error growth at a level comparable with analysis error.

Two experiments with larger amplitudes:
“LARGE” ~ analysis error ← initial state from the external hydrostatic model ~2 m s-1 (UV 
level 8 ~850 hPa)

“SMALL” ~0.1 of “LARGE”, but still about 1 order of magnitude larger than the smallest 
(above)
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Accumulated precipitation from 0000 to 1200 UTC in the control trajectory



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

True trajectory: model trajectory from 21h of 25 Sep 2006 to 18h of 26 Sep 2006
Initial condition from external model

Control trajectory “18H” for LARGE BV amplitude, SLOW instabilities:
initial condition from external model at 18h of 25 Sep 2006

Control trajectory “R21” for SMALL BV amplitude, FAST instabilities: same as 18H, but
error rescaled at 21h of 25 Sep 2006 so that  (R21 -TRUTH) = 0.1 (18H - TRUTH)

Experiments start at 00h of 26 Sep 2006, after each trajectory developed its own dynamics

Error of 18H

Error of R21

error = control - truth



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

Orthogonalization required, scalar product needed: 
sum of component products T and U,V normalized with their variabilities

Breeding
LARGE – 18H : rescaling every 30 min  (several amplitude values)

SMALL – R21 : rescaling every 15 min (several amplitude values)

Range of amplitudes for 18H

Range of amplitudes for R21

Error of 18H

Error of R21



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

18H: growth rate decreases with BV index
All positive only 15:00-18:00 (slower 
scales dominant), few positive otherwise.
 

R21: growth rate does not decrease with 
BV index
All positive always except 09:00-12:00

BOTH: time variability (different curves) reflects time variability of forecast error:
 larger BV growth rates when respective forecast error increases
Number of positive growth rates → error complexity (independent growth directions)
 



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

Growth rates of forecast error (non-linear) trajectories 18H and R21 (lines) 
and their first BV (kept linear by rescaling at 0.36TUV 30min, 0.10TUV 15min)

Correspondence: BVs contain the same instabilities as the forecast error

TD≃12h ⇔λ=0.06

T D≃6 h⇔λ≃0.12

TD≃4 h⇔λ≃0.17

T D≃2 h⇔λ≃0.35

T D≃3 h⇔λ≃0.23



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

18H

R21

Square norm of error orthogonal projection onto 12-BV subspace



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

Square norm of error orthogonal projection onto BV subspaces: 1 to 24BVs

18H

R21

18H:
Increasing the subspace dimension is very 
effective at first, then the square error 
fraction in practice does not increase 
anymore.
Few BVs are sufficient to “explain” an 
important error portion.

R21: 
Slow regular increase: 
Many Bvs (more than 24) determine each a 
small amount of error fraction
Many independent instabilities



  

Forecast error
(norm of horizontal velocity vector at level 15 ~700hPa)

Forecast error component on 12-BV subspace
● Contains important features present in the forecast 

error
● Not all of them

Forecast error component orthogonal to the 12-BV 
subspace
● Some important structures disappear
● Large (amplitude and extension) structures still 

present
● Some are non-growing (from hydrostatic initial 

condition)



  

Forecast error
(norm of horizontal velocity vector at level 15 ~700hPa)

Forecast error component on 12-BV subspace
● Contains important features present in the forecast 

error
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Forecast error component orthogonal to the 12-BV 
subspace
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● Large (amplitude and extension) structures still 

present
● Some are non-growing (from hydrostatic initial 

condition)



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems



  

3. Multiple scale instabilities in non-hydrostatic, convection resolving systems

T D≃7 h⇔λ≃0.1



  

CONCLUSIONS 1/3

Quantitative study of instabilities representative of forecast error evolution at different 

(time and space) scales

When errors are very small, they grow very fast,  T
d
~2.5h–7h : convective scale 

instability

Larger errors grow more slowly,  T
d
~10h–14h

Non-growing error components:

Saturated small scale, fast instabilities

larger scale error structures present in an initial condition coming from a larger-scale 

hydrostatic model

The breeding technique enables selection of instabilities relevant for forecast errors 

of a given typical amplitude:

BVs amplitude of about the order of the analysis error – slow instabilities

BVs amplitude about 1/10 of the order of the analysis error – small, fast instabilities

Multiple scale instabilities in non-hydrostatic, convection resolving systems



  

CONCLUSIONS 2/3

BVs amplitude of about the order of the analysis error:

Growth rate decrease with Bred Vector (BV) index

Doubling times 10-14 h

Small number of actively unstable BVs

Projection of error onto 12-BV subspace:

Most of it on the leading BVs, not much increasing from 12 to 24 BVs

BVs amplitude about  1/10 of the order of the analysis error:

The spectrum of BVs is flat: many BVs with competitive (large) growth rates

Doubling times 2-7 h

Projection of error onto 12-BV subspace:

Small

Slowly and steadily increasing with BV index : Many BVs needed.

Unstable subspace of convective scale has very large dimension

Multiple scale instabilities in non-hydrostatic, convection resolving systems



  

CONCLUSIONS 3/3

When we decrease much the analysis error (by improving DA) we activate 

convective scale instability! Then we need more and more members in an ensemble 

forecast or ensemble-based assimilation

At the level of present-day analysis error, though:

Instabilities do not grow that fast (errors at fast convective scale are saturated)

There are not many independent growth directions

Relevant portion of forecast error can be captured by BVs and eliminated by DA

Rapid growth is expected after the analysis

What to do:

Frequent analysis (every hour or so)

DO NOT restart from external, larger-scale, hydrostatic model, initial condition – 

use it for boundary conditions only: make use of DA to control the trajectory

Localization techniques ?!?

...Multiple scale breeding /ensemble ?!?

Multiple scale instabilities in non-hydrostatic, convection resolving systems
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