# Testing the performance of a spatial consistency test for data quality control

#### Cristian Lussana<sup>(1)</sup>, Marta R. Salvati<sup>(1)</sup> and Francesco Uboldi<sup>(2)</sup>

(1) Lombardia's Public Weather Service, ARPA Lombardia, Milan (Italy)(2) consultant, Novate Milanese, Milan (Italy)



#### **Meteorological network**

Automatic stations; Complex orography; Hourly data; High station density; Station altitudes: 10m - >3000m AMSL;

Grid: 1.5 Km (177x174); Grid orography from a high resolution DEM (250 m) without smoothing;





#### **Meteorological network**





#### **Automated Quality Control**

- Plausible value check
- Time consistency check 1: **step** (check on a maximum allowed variability of an hourly value)
- Time consistency check 2: **persistence** (check on a minimum required variability in a prescribed time interval)
- Spatial Consistency Test (SCT)

**Decision Making Algorithms** 

Data disseminated to the users

Test, parameters and DMA implementation are variable dependent



#### Automated Quality Control (details tomorrow in session AW6 !)

- Plausible value check
- Time consistency check 1: **step** (check on a maximum allowed variability of an hourly value)
- Time consistency check 2: **persistence** (check on a minimum required variability in a prescribed time interval)
- Spatial Consistency Test (SCT)

**Decision Making Algorithms** 

| DMA-Temperature | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------|---|---|---|---|---|---|---|
| Plausibility    | Ρ | Ρ | Ρ | Ρ | F | - | - |
| SCT             | Ρ | Ρ | W | W | - | F | - |
| Step            | Ρ | W | Ρ | W | - | - | - |
| Persistence     | Ρ | Ρ | Ρ | Ρ | - | - | F |
| Result          | G | G | G | В | В | В | В |

Data disseminated to the users

Test, parameters and DMA implementation are variable dependent



#### **Spatial Consistency Test**

The SCT is based on a spatial analysis scheme (*Uboldi et al., Meteorol. Appl., 2008*), an implementation of <u>Optimal</u> <u>Interpolation</u>

#### Main features of the analysis scheme:

- Background information derived from observations detrending;
- Background error covariance specified by means of 3D gaussian correlation functions;
- Efficient computation algorithm.





#### **Observational Error Model** (Lorenc and Hammond, gjrms, 1988)



Observation not affected by **Gross Error (GE)**  $P(O|\overline{GE})$ Gaussian *pdf* 

Observation affected by **GE** 

P(O|GE)

uniform *pdf* over the climatological interval



#### **Observational Error Model: Gaussian only GE <u>present</u> but <u>NOT</u> accounted for**



meteo ARPA

#### 9<sup>th</sup> EMS / 9<sup>th</sup> ECAM





#### **Observational Error Model: accounting for a GE**

#### **Observational Error Model**





#### **Observational Error Model**

# The observation is rejected





#### **<u>Cross Validation (CV) Analysis</u>**

In our case (no independent background field) the *a priori* estimate is the CV analysis:

 $y^{CVa}$ 

The CV analysis is produced using ALL observations EXCEPT the observation undergoing the SCT.

As a consequence, observation error and CV analysis error are uncorrelated.



#### **Spatial Consistency Test**

$$(y^{o} - y^{CVa})^{2} > T^{2}(\sigma_{o}^{2} + \sigma_{CVa}^{2})$$

Only  $T^2$ ,  $\sigma_o^2$  are needed: objectively estimated from the statistical hypothesis and 3-year statistics

- The SCT automatically accounts for local data density:
- > completely isolated stations (CV analysis = background): permissive

$$(y^{o} - y^{b})^{2} > T^{2}(\sigma_{o}^{2} + \sigma_{b}^{2})$$

> totally redundant stations (CV analysis = analysis): restrictive

$$y^{o} - y^{CVa})^{2} = (y^{o} - y^{a})^{2} > T^{2}\sigma_{o}^{2}$$



<u>T<sup>2</sup>estimation</u>

ARPA



#### **SCT Performance monitoring**

|             |         |         | SCT     |      |  |
|-------------|---------|---------|---------|------|--|
| Persistence | Step    | Pass    | Warning | Fail |  |
| Pass        | Pass    | 1151771 | 2568    | 1252 |  |
| Pass        | Warning | 426     | 177     | 1285 |  |
| Fail        | Pass    | 4815    | 1716    | 4323 |  |
| Fail        | Warning | 0       | 0       | 0    |  |

Total observation tested = 1165339 January – June 2009 temperature observations



#### **SCT Performance monitoring**

SCT rejection frequency = 0.0045 (expected: from 0.0018 to 0.0031)

Estimate f(pass|GE) = 0.29 (expected: from 0.13 to 0.23)

- Network management differences
- Temporal GE correlations
- Systematic errors



### **Conclusions**

## <u>SCT:</u>

- particularly efficient for a high density network
- based on clear statistical hypothesis (error model + OI)
- objective scheme for estimating thresholds and parameters
- a priori estimate of false and missed rejections
- local station density automatically taken into account
- > the threshold estimation procedure also provides a measure of network reliability;
- > preliminary comparison of test performance in the first 6 months of operational use with the 3 years statistics used to estimate test parameters show agreement in the order of magnitude but larger values of P(GE) in the network.
- > large amplitude representativity errors



contact: c.lussana@arpalombardia.it