

Metodo bayesiano / variazionale (lavoro in corso!)

L'idea è:

sostituire Source-Detector+Emission Builder in ORAS v.2.0 con un sistema di ottimizzazione matematicamente ben definito

Francesco Uboldi, Gianni Tinarelli, Giuseppe Carlino Giornata ARIANET - Milano 25 Gennaio 2017

Metodo bayesiano / variazionale (lavoro in corso)

Premessa

- Emissioni e concentrazioni sono non-negative;
- Quando diverse da zero (o da un eventuale valore di fondo ambientale) presentano ampie variazioni, di diversi ordini di grandezza.
- Queste variabili **non** possono essere descritte da una statistica **gaussiana**

Metodo bayesiano / variazionale (lavoro in corso)

Premessa

- Emissioni e concentrazioni sono non-negative;
- Quando diverse da zero (o da un eventuale valore di fondo ambientale) presentano ampie variazioni, di diversi ordini di grandezza.
- Queste variabili non possono essere descritte da una statistica gaussiana

Trasformazione : logaritmo (del numero di particelle x > 0) $\xi = \ln(x)$

- Si assume che la variabile trasformata possa essere trattata come gaussiana.
- Separazione tra osservazioni zero e osservazioni positive.
- Ciclo sulle gridbox candidate come potenziali posizioni della sorgente
- Per ogni gridbox stima bayesiana-variazionale delle emissioni
- Si usa retroSPRAY

Metodo bayesiano / variazionale (lavoro in corso)

Premessa

- Emissioni e concentrazioni sono non-negative;
- Quando diverse da zero (o da un eventuale valore di fondo ambientale) presentano ampie variazioni, di diversi ordini di grandezza.
- Queste variabili non possono essere descritte da una statistica gaussiana

Trasformazione : logaritmo (del numero di particelle x > 0) $\xi = \ln(x)$

- Si assume che la variabile trasformata possa essere trattata come gaussiana.
- Separazione tra osservazioni zero e osservazioni positive.
- Ciclo sulle gridbox candidate come potenziali posizioni della sorgente
- Per ogni *gridbox* stima bayesiana-variazionale delle emissioni
- Si usa retroSPRAY

Numeri di particelle:

Emissioni: $\xi = \ln(x)$

Osservazioni: $\eta^o = \ln(y^o)$ stima delle osservazioni: $\eta = \ln(y)$

Impostazione bayesiana

Probabilità a priori delle emissioni (NON trasformate) p(x) = costante : massima incertezza

Probabilità a priori delle osservazioni **trasformate** $p(\eta^o|\xi) \rightarrow \text{gaussiana}$ (probabilità condizionata, note le emissioni)

Impostazione bayesiana

Probabilità a priori delle emissioni (NON trasformate) $p(\mathbf{x})$ = costante : massima incertezza

Probabilità a priori delle osservazioni **trasformate** $p(\eta^o|\xi) \rightarrow \text{gaussiana}$ (probabilità condizionata, note le emissioni)

teorema di Bayes → Probabilità **a posteriori** delle emissioni, note le osservazioni = MAX

$$p(\boldsymbol{\xi}|\boldsymbol{\eta}^o) \propto \exp\left[-\frac{1}{2\sigma_{\eta_o}^2}(\boldsymbol{\eta}(\boldsymbol{\xi})-\boldsymbol{\eta}^o)^{\mathrm{T}}(\boldsymbol{\eta}(\boldsymbol{\xi})-\boldsymbol{\eta}^o)\right] = MAX$$

Impostazione bayesiana

Probabilità a priori delle emissioni (NON trasformate) $p(\mathbf{x})$ = costante : massima incertezza

Probabilità a priori delle osservazioni **trasformate** $p(\eta^o|\xi) \rightarrow \text{gaussiana}$ (probabilità condizionata, note le emissioni)

teorema di Bayes → Probabilità **a posteriori** delle emissioni, note le osservazioni = MAX

$$p(\boldsymbol{\xi}|\boldsymbol{\eta}^o) \propto \exp\left[-\frac{1}{2\sigma_{\eta_o}^2}(\boldsymbol{\eta}(\boldsymbol{\xi})-\boldsymbol{\eta}^o)^{\mathrm{T}}(\boldsymbol{\eta}(\boldsymbol{\xi})-\boldsymbol{\eta}^o)\right] = MAX$$

Si passa a un problema variazionale, ovvero si minimizza la funzione oggettiva:

$$J(\xi) = \frac{1}{2\sigma_n^2} (\mathbf{\eta}(\xi) - \mathbf{\eta}^o)^{\mathrm{T}} (\mathbf{\eta}(\xi) - \mathbf{\eta}^o) = MIN$$

$$J(\xi) = \frac{1}{2\sigma_{\eta_o}^2} (\mathbf{\eta}(\xi) - \mathbf{\eta}^o)^{\mathrm{T}} (\mathbf{\eta}(\xi) - \mathbf{\eta}^o) = MIN$$

- La variabile di controllo è ξ.
- Problema non-lineare.
- È possibile calcolare J e il suo gradiente su ogni vettore ξ : conjugate gradient iteration.

La stima con SPRAY delle osservazioni a partire dalle emissioni è lineare: corrisponde ad applicare una matrice A al vettore delle emissioni x: si ottiene un vettore y

$$y = A x$$

Le variabili trasformate η sono funzione composta delle emissioni trasformate ξ :

$$\xi \rightarrow x = \exp(\xi) \rightarrow y = Ax \rightarrow \eta = \ln(y)$$

Le componenti della matrice A sono calcolate integrando retroSPRAY:

$$\frac{\partial}{\partial \mathbf{x}} = \mathbf{A}^{\mathrm{T}} \frac{\partial}{\partial \mathbf{y}}$$

NOTA: A causa della componente stocastica presente in un modello a particelle come SPRAY, **retroSPRAY non è** l'aggiunto **esatto** di SPRAY ma solo **approssimato**.

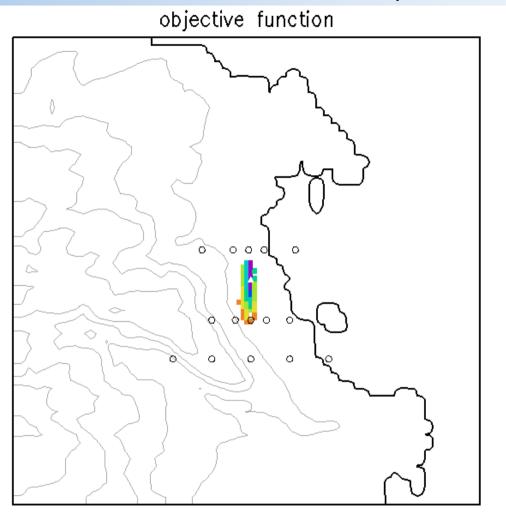
Ciclo sulle celle (gridbox)

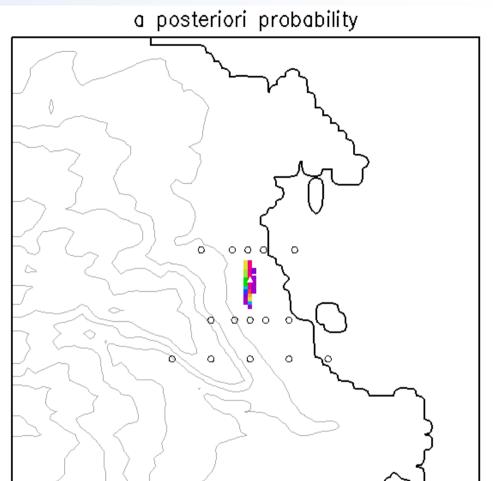
Si escludono a priori dalle candidate sorgenti le celle non "toccate" dalle retro-traiettorie, per cui le componenti di A relative a qualche osservazione non-zero sono tutte nulle: la sorgente deve "spiegare" tutte le osservazioni positive.

In ogni cella si stimano le emissioni \mathbf{x} e un valore di J e di p: mappa di probabilità

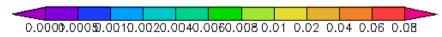
La migliore stima della posizione della sorgente è nella cella per cui il valore di J è minimo (e p massimo) rispetto alle altre celle.

Osservazioni zero

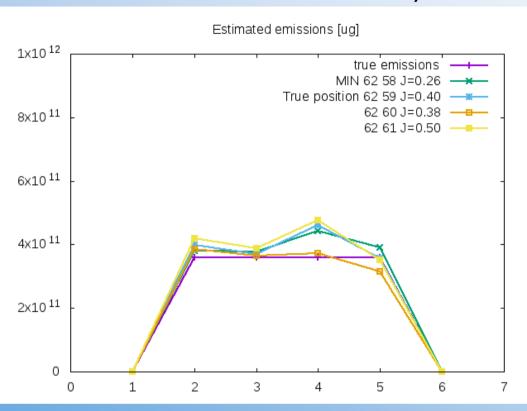

Scelta:

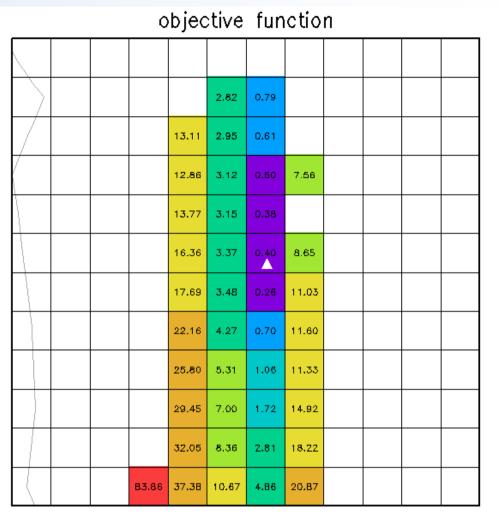

- 1) Esclusione a priori di celle (*gridbox*), in modo analogo a *source detector*
- **2) Esclusione a posteriori** di celle. Trovato il minimo si stimano le emissioni \mathbf{x} e, applicando a queste la matrice \mathbf{A} , le osservazioni \mathbf{y} . In corrispondenza di osservazioni $\mathbf{y}^o = 0$, se le stime \mathbf{y} sono troppo grandi si esclude la cella.
- 3) Inclusione di un apposito termine di penalità nella funzione oggettiva

Le mappe presentate qui sono ottenute con la tecnica 2.

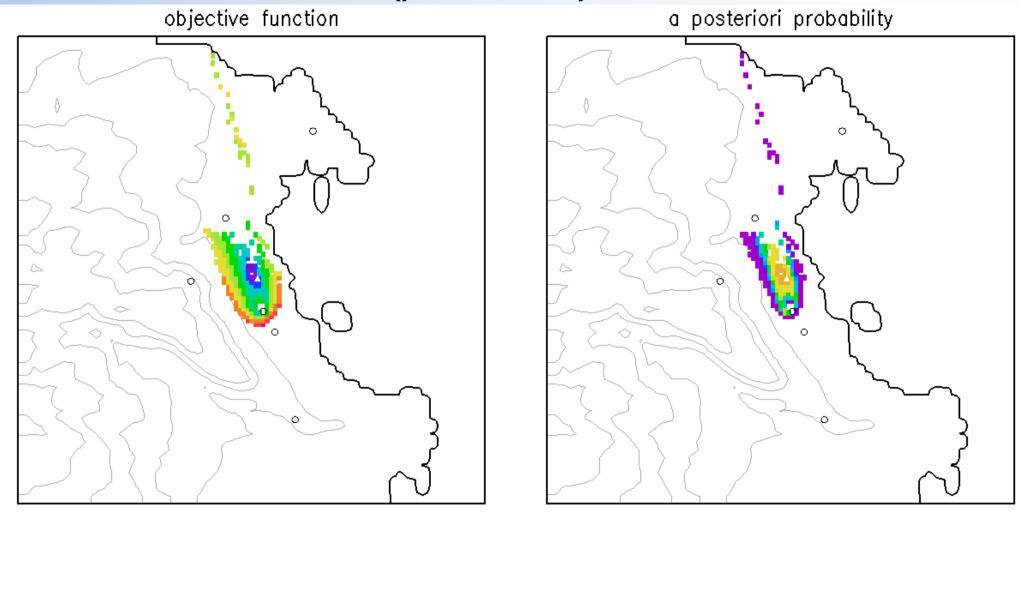


Caso sintetico 1 - 15 stazioni, vento da Nord

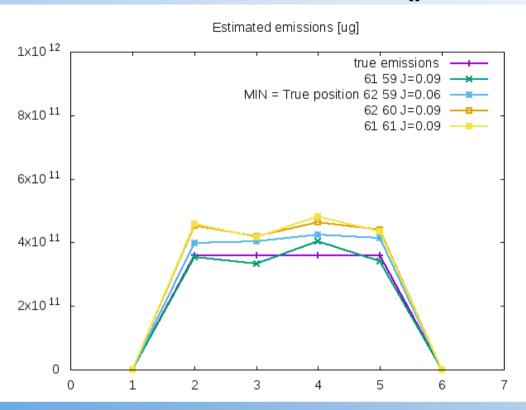




Caso sintetico 1 - 15 stazioni, vento da Nord

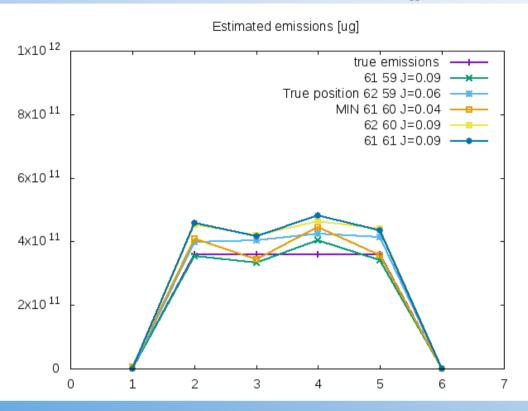


Caso sintetico 2 - 6 stazioni (posizioni reali), vento da Nord


0.5

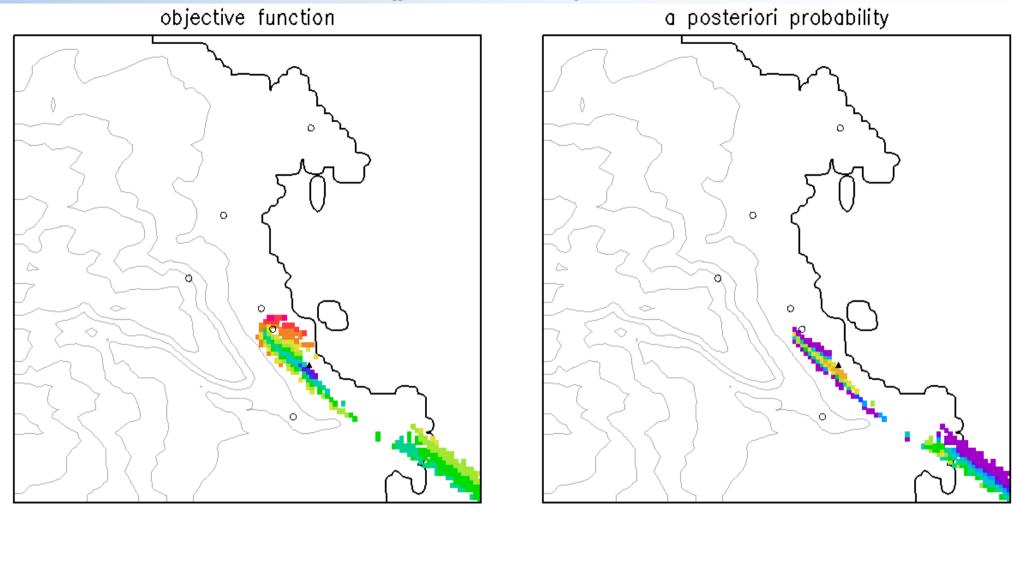
10

Caso sintetico 2 - 6 stazioni (posizioni reali), vento da Nord


objective function

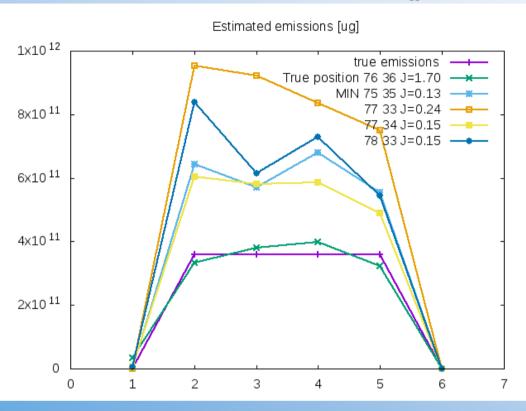
3.62	2.15	0.92	0.58	0.46		0.93	1.89				
4.09	2.76	1,22	0,57				1.43	3,24	6.36		
5.39	3.43	1.43	0.62	0.17	0.17	0.45		2.74	5.49	8.02	
5.97	3.87	1.74	0.71	0.26	0.09	0.25	0.80	2.24	4.48	8.20	
7.43	4.29	2.29	0.95	0.28		0.09	0.57	1.53	3.50		12.29
9.74	5.56	2.73	1.25	0.43	0.09	0.06	0.30	1.06	2.78	7.55	10.17
11.26	6.81	3.57	1.50	0.61	0.25	0.21	0.33	0.97	2.40	5.49	10.45
14.69	8.77	4.23	2.27	1.02	0.51	0.39	0.38	0.82	2.13	5.25	12.19
17,48	11.54	5,47	2.86	1.07	0.66	0.82	0.76	0.67	1.95	5.42	14.15
20.67	15.31	8.81	3.63	1.54	0.83	1.22	1.39	0.88	1.52	5.50	14.21
27,75	19.84	10.81	5.46	2,42	1.19	1,85	2,38	1,85	1.42	5.09	15.71
	21.21	12.60	7.19	3.00	1.26	2.23	4.16	3.83	1.73	5.31	15.82

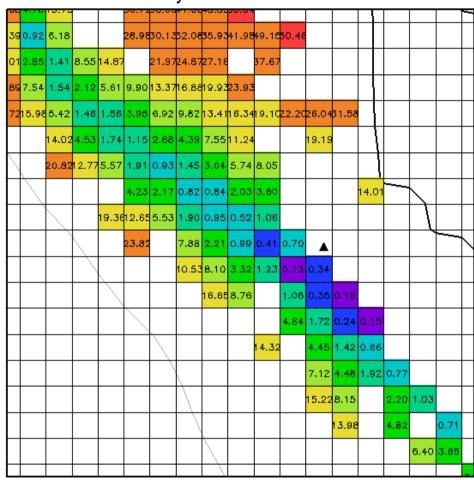
Caso sintetico 2 - 6 stazioni (posizioni reali), vento da Nord


objective function

				- ,							
3.62	2.15	0.92	0.58	0.46	0.67	0.93	1.89		7.9 9	7.37	
4.09	2.76	1,22	0.57	0,31	0.33		1.43	3,24	6.36		
5.39	3.43	1.43	0.62	0.17	0.17	0.45	1.06	2.74	5.49	8.02	
5.97	3.87	1.74	0.71	0.28	0.09	0.25	0.80	2.24	4.48	8.20	
7.43	4.29	2.29	0.95	0.28	0.04	0.09	0.57	1.53	3.50	8.14	12.29
9.74	5.56	2.73	1.25	0.43	0.09	0.06	0.30	1.06	2.78	7.55	10.17
11.26	6.81	3.57	1.50	0.61	0.25	0.21	0.33	0.97	2.40	5.49	10.45
14.69	8.77	4.23	2.27	1.02	0.51	0.39	0.38	0.82	2.13	5.25	12.19
17,48	11.54	5,47	2.86	1,07	0.66	0.82	0.76	0.67	1.95	5.42	14.15
20.67	15.31	8.81	3.63	1.54	0.83	1.22	1.39	0.88	1.52	5.50	14.21
27,75	19.84	10.81	5.46	2,42	1.19	1,85	2,38	1.85	1.42	5.09	15.71
	21.21	12.60	7.19	3.00	1.26	2.23	4.16	3.83	1.73	5.31	15.82

Caso sintetico 3 - 6 stazioni (posizioni reali), vento da Sud





Caso sintetico 3 - 6 stazioni (posizioni reali), vento da Sud

objective function

Conclusioni

- Questo lavoro è attualmente in fase di sviluppo....
- ...MA è finalizzato a realizzare un prodotto operativo che vada ad integrare il sistema SPRAY + retroSPRAY
- Il metodo è fondato da un punto di vista matematico e statistico
- Non presenta problemi di fragilità numerica
- È veloce: la parte di calcolo più lunga è l'integrazione di retroSPRAY
- Le prime prove mostrano risultati più che incoraggianti, sia come posizione della sorgente, sia come stima delle emissioni
- C'è ancora del lavoro da fare!
- valutazione scelte di implementazione
- prove su casi reali
- automatizzazione