Francesco UBOLDI Milan, Italy, *uboldi@magritte.it*

NVE, Oslo, Norway

22 March 2017

Buliding blocks

- Rain-gauge observations: \mathbf{y}^{o}
- Background field \leftarrow radar estimates: \mathbf{x}^{b} on gridpoints, \mathbf{y}^{b} on station points
- Innovation: $\mathbf{y}^o \mathbf{y}^b$

valid observations 12h 06DEC2015

valid observations 12h 27JUN2014

Preliminary choice

- Use the same interpolation parameters in convective and stratiform precipitation events
- Compromise
- Questionable...
- Otherwise 1: change parameters with season or month?
- Otherwise 2: Detect proportion convective /stratiform: how?
 - Use model forecasts?
 - Analysis of radar estimation "fields"?
- Not for the moment

 $dy = y^o - y^b \pmod{m}$

Choices:

 Separate areas (gridpoints and station points) where precipitation is occurring from areas where there is no precipitation

Choices:

- Separate areas (gridpoints and station points) where precipitation is occurring from areas where there is no precipitation
- Where it rains, assume that it rains at least as much as the radar estimates: x^b on gridpoints, y^b on station points
 - Make use of rain-gauge measurements y^o only where they are larger than the corresponding radar estimate y^b
 - Then innovation is positive: $\mathbf{y}^{o} \mathbf{y}^{b} > 0$
 - A rain-gauge observation is considered *innovative* only when it exceeds the radar estimate used as background value.

2014-06-27 : (yo-yb) [yb>X0 AND yo>yb]

5514

765

2015-12-06 : (yo-yb) [yb>X0 & yo>=yb]

Less than 10 mm: 762

Choices:

- Separate areas (gridpoints and station points) where precipitation is occurring from areas where there is no precipitation
- Where it rains, assume that it rains at least as much as the radar estimates: x^b on gridpoints, y^b on station points
 - Make use of rain-gauge measurements y^o only where they are larger than the corresponding radar estimate y^b
 - Then innovation is positive: $\mathbf{y}^o \mathbf{y}^b > 0$
 - A rain-gauge observation is considered *innovative* only when it exceeds the radar estimate used as background value.
- Then, proceed with usual O. I. (Optimal interpolation)
 - Questionable: still non-gaussian (skewed: gamma?)
 - Small ratio $\sigma_0^2/\sigma_b^2 = 0.1$: give confidence to these observations.

Precipitation analysis combining rain-gauge observations with radar estimates **OI and covariances**

G: (I,M) : background error covariance gridpoints – observation points **S**: (M,M): background error covariance observation points – observation points **R**: (M,M): observation error covariance (assumed diagonal) Precipitation analysis combining rain-gauge observations with radar estimates Background Correlation function(s)

- d_{im} : distance between (grid/station) point *i* and station point *m*
- c : radar attenuation class at (grid/station) point *i*
- D_{h} : decorrelation distance

$$G_{i,m} \text{ or } S_{i,m} = \sigma_b^2 \left(1 + \frac{d_{i,m}}{D_h} \right) \exp\left(-\frac{d_{i,m}}{D_h}\right) \cdot \left[1 - (c_i - c_m)^2 \right]$$
$$G_{i,m} \text{ or } S_{i,m} = \sigma_b^2 \exp\left[-\frac{1}{2} \left(\frac{d_{i,m}}{D_h}\right)^2\right]$$

G: (*I*,*M*) : background error covariance gridpoints – observation points **S**: (*M*,*M*): background error covariance observation points – observation points **R**: (*M*,*M*): observation error covariance (assumed diagonal) $\mathbf{R} = \sigma_o^2 \mathbf{I}$

 D_h : tested various values, best results for D_h = 20 km; $\sigma_o^2/\sigma_b^2 = 0.1$ Precipitation analysis combining rain-gauge observations with radar estimates Separate areas: precipitation / no precipitation

Choices:

- Threshold $X_0 = 0.02 \text{ mm}$
- "ZERO" obs: $0 < y^{\circ} < X_{0} \rightarrow IDI$ (Integral Data Influence, grid and station points): IDI_{7}
- "POSITIVE" obs: $y^o > X_o \& y^o > y^b$ larger than $X_o AND$ than background $\rightarrow IDI_p$
- IDI = Integral Data Influence:

analysis of all "observations" = 1, with background = 0

IDI= 0 far from obs, IDI~1 in densely observed areas.

$$\mathbf{IDI} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \mathbf{G} (\mathbf{S} + \mathbf{R})^{-1} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• Compare IDI_z and IDI_P with a threshold value: $IDI_{MIN} = 0.2$

 $IDI_{z,P} < IDI_{MIN}$ then $IDI_{z,P} = Z$ (zero), otherwise $IDI_{z,P} = P$ (positive)

Precipitation analysis combining rain-gauge observations with radar estimates Separate areas: precipitation / no precipitation

Xp	IDIZ	IDIP	X ^a	Do:
U	Z	Z	U	x ^a ← UNDEF
U	Z	Ρ	Ρ	x ^b ← 0, then compute analysis
U	Р	Z	Z	X ^a ← 0
U	Р	Ρ	Ρ	IDIP prevails: $\mathbf{x}^{b} \leftarrow 0$, then compute analysis
Ζ	Z	Z	Z	X ^a ← 0
Z	Z	Р	Ρ	compute analysis
Ζ	Р	Z	Z	X ^a ← 0
Z	Р	Ρ	Ρ	IDIP prevails: compute analysis
Р	Z	Z	Ρ	$\mathbf{X}^{\mathbf{a}} \leftarrow \mathbf{X}^{\mathbf{b}}$
Р	Z	Ρ	Ρ	compute analysis
Р	Р	Z	Р	$\mathbf{X}^{\mathbf{a}} \leftarrow \mathbf{X}^{\mathbf{b}}$
Ρ	Р	Ρ	Ρ	IDIP prevails: compute analysis

 $IDI_{z,P} < IDI_{MIN} \Rightarrow IDI_{z,P} = Z$ (zero); otherwise $IDI_{z,P} = P$ (positive); U = UNDEFined value

Separate areas: precipitation / no precipitation

valid observations 12h 06DEC2015

valid observations 12h 27JUN2014

Separate areas: precipitation / no precipitation

green:IDIZ blue:IDIP 12h 06DEC2015

green:IDIZ blue:IDIP 12h 27JUN2014

RADAR ESTIMATE = Background and rain-gauge observations

2 3 5 7 10 15 20 30 5<mark>0 70 100</mark>

2 3 5 7 10 15 20 30 50 70 100

xa and yo 12h 27JUN2014

and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Analysis: RADAR + RAINGAUGES

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Background RADAR estimate

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Background RADAR estimate

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Background RADAR estimate

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

Background RADAR estimate

Analysis increment \mathbf{x}^{a} - \mathbf{x}^{b} and innovation \mathbf{y}^{o} - \mathbf{y}^{b}

CV-score and RMS of innovation

The CV-score is the RMS residual from the CV-analysis, obtained at each obs location by not using its observed value, but using all other observations. Compared with RMS residual raingauge-radar.

WINTER CASE

Stratiform precipitation is rather smoothly distributed in space: the CV-score is a meaningful measure of analysis error.

SUMMER CASE

Convective precipitation may happen to be detected by just one rain-gauge: the CV-score may fail as a measure of analysis error.

Conclusions

- Precipitation analysis combining rain-gauge observations and radar estimates
- Operational choices:
 - Separation RAIN/NO RAIN areas
 - Use a raingauge observation only if it exceeds the corresponding radar estimate ("innovative" observation)
 - Optimal Interpolation radar \rightarrow background, raingauges \rightarrow observations
- Separation RAIN /NO RAIN areas by means of IDI (Integral Data Influence) fields of:
 - "ZERO" observations less than threshold 0.02 mm
 - "POSITIVE" observation larger than threshold and radar
- Correlation function depending on distance and radar attenuation class
- Raingauge observations compensate for radar attenuation in stratiform cases
- Radar estimation (better than raingauges in convective cases) not degraded by raingauges interpolation
- DEVELOPMENTS: gamma distribution? Include model fields? Change parameters with season? Separate stratiform and convective precipitation?